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ABSTRACT

In this research paper, we will discuss about the construction of the sequence spaces, viz.,%, ¢, ¢, Sequence spaces. The algebraic and
topological properties of these spaces are also discussed in detail. Further, some basic definitions of particular type of sequence spaces are
given in this paper. We will also define new sequence spaces as double difference sequence spaces using the Orlicz function and paranorm.
We proved that all the new double difference sequence spaces are complete normed spaces. Some inclusion relations have been proved for
new sequence spaces.
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1. INTRODUCTION

In this research paper, £, c and ¢, respectively denotes the spaces of all bounded sequences, convergent sequence sequences and null
sequences. We will also define some basic definitions and will be helpful latter to prove some results.

Double difference in a sequence is defined as

A2x = (B2xn)5ey = (A(Bx))_ = (BCtn = Xne))., = By — Axp))iy = (o = 2%y + Xna2)iy
There are some double difference sequence spaces[5,6,9] and are defined as
(0% = {x = (x,) : A%x € £}
c(A®) = {x = (x,) : A’x €}
co(A?) = {x = (x,) : A%x € ¢}

Orlicz function is a function F:[0, o) — [0, o0), which is continuous, non-decreasing and convex with
F=0,F(x)>0,forx>0and F(x) » o as x - oo,
An Orlicz function F is said to satisfy A, —condition, if there exists a constant k > 0, such that
F(2x) < kF(x), for all values of x,x = 0.

A, —condition is equivalent to F (£x) < k£F (x), for all values of x and for £ > 1. If the convexity of Orlicz function is replaced by F (x + y) <

F(x) + F(y), then this function is called modulus function, introduced by Nakano. It was further investigated from sequence space point of
view by Ruckle and many others.

Now we define the Orlicz sequence space([1], [4]) by using the idea of Orlicz function and is defined as

X
€F={x6w:ZF(?n)<00, for somep >0

n=1
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The norm of £ sequence space is

=m0 ¢ (22 <1

n=1

Now define the sequence spaces for an Orlicz function F
. A%, |
co(A%,F) ={x=(x,): lim F T =0, for somep >0
n—-oo

2, _
c(A%,0) = {x = (x,): Tlll_r){)loF (%) =0, forsomep >0, € (C}

2o, (0%, F) = {x = (x,) :supF ('AZX”l

n=0 P

) < oo, forsomep > 0}

The norm of these sequence spaces is defined as

. A%, |
[1x]|p2 = inf{p >0 :supF , <1

n=0

2. DEFINITIONS AND PRELIMINARIES

Definition 2.1 Linear space. A space X is said to be linear if
(1) x+yeX;vx,yeX
) axeX;xeX,a €K

Definition 2.2 Normed linear Space. Let || .|| is a function from space X to R*. The space (X, ||.||) is said to be normed linear space over
filed K if it holds the following axioms

(D) |Ix]|=0and ||x]] =0 &x=0

) 11Bx|| = |1B]-l|x|l, whereB € K and x € X

G) llx+yll < llx[l+1lyll,  Vxy€eX

Example 2. 1. The set R™ or C" is a normed linear space with norm defined as; ||x|| = [X*-, |xi|2]%
Definition 2.3. A Banach space is a complete normed space under the norm d(x,y) = ||x — y||

Example 2.2. (1) space P is an example of Banach space with norm defined as;

1
lxll = Zr=1 lxn[P)P

1
(2) R™ or C" is a Banach space with norm defined as; ||x|| = [X™~, |x;|?]

[oe]

Definition 2.4 Cauchy Sequence. A sequence {x;}{2; isa Cauchy sequence if for every positive real number e, there is a positive integer N
such that for all natural numbers m,n > N , |x,, — x,| < €.

Definition 2.5 continuous Function. A function f(x) is said to be continuous at a point x = a if it satisfy the following three conditions

(1) f(a) exists.
(2) ,1}_{2 f () exists.

3) lim f() = f(@).

Another definition of continuous function, for all ¢ > 0, there exists § > 0 such that |[x — a| < §,x # a implies that |f(x) — f(a) <.
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Definition 2.6 Convex Function. A function f(x) is convex on an interval [a, b] if for any two points x; and x, in [a, b] and any A, where

Definition 2.7 Paranormed space. A Paranormed space (X, P) is a vector space X with zero element « together with a function P : X - R*
(called a paranorm on X) which satisfy the following axioms

(D) P(a) = 0.
(2) P(x) =P(—x);x €X.
(3) P(x1 + x3) < P(xy) + P(xy) ; x4, %, € X.

(4) Scalar multiplication is continuous i.e., if y, > yasn — o and {x,} is a sequence of vectors with P(x,, —x) - 0 as n — oo, then
P(ypx, —yx) > 0asn - oo,

A papanorm is called total if P(x) =0 = x = a.

Definition 2.8. The norm on the double difference sequence space £, (A?) is defined as

[14%x]| | = sup |A%x,|
neN

Definition 2.9. Norm on space c(A?) is defined as

[14%x]] oo

sup |A%x,|
neN

Definition 2.10. Norm on space c,(A?) is defined as

A%x||, = max |A%x
[1A%x|[o nEN| nl

Example 2.3. The sequence £, (A?) is given as

{enter = {(-D"y = {-11,-1,1,-11,..}.
Aim: To show that {(—1)"}>_; = {—1,1,—-1,1,-1,1, ...} € £,,(A?).
Let {x,}r=q = {x1, X3, X3, X4, X5, ... }
Where, x; = —1,x, =1, x5 =—-1,x, = 1,x5 = -1
{Ax, o-1 = {Axq, Axy, Axs, Axg, Axy, ... }
= {Axp)ro, = {x1 — X5, %5 — X3, X3 — Xy, ... }
> (M), ={-1-11-(-1),-1-1,1—(-1),..}
(Ax)o, = (-2,2,-2,2,...}
Also, {A%x,}5_, = {A%x;, A%x,, A%xs, ...}
{A%x, )% = {Ax; — Axy, Ax, — Axg, Axy — Axy, ...}
> (M2x)0, ={-2-22-(-2),-2-2,2-(-2),..]
{A%x, )5, = {—4,4,—4,4, ...}, which is bounded sequence.
Therefore, {A%x,}_; € 4.
Hence, {(—1)"}5_; € £,(A%).
Example 2.4. The sequence c(A?) is discussed as follows:

el ={1,24,7,11, ...}

Aim: To show that {x,, }>>; € c(A?)
Let {x }meq1 = {x1, X2, X3, %4, X5, ... }
Where, x; = 1,x, = 2,x3 = 4,x, = 7,x5 = 11
{Ax, Io=q = {Axy, Axy, Axs, Axy, ... }
= {Axptrog = {x1 — X5, %5 — X3, X3 — X4, o0 }
> {(Ax o, ={1-22—-44-77-11,..}
> {Ax,)}2, ={-1,-2,-3,—4,..}
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Also, {A%x,}%, = {A’x;, A’x,, A’x, ...}

= {A%x, )0, = {A%x; — A%x,, A%x, — A%xy, A%x; — A%x,, ...}
= {MPx e ={(-1-(-2),-2-(-3),-3-(-4),..}

= {Ax ), ={-1+2,-24+3,-3+4,..}

{A%x, -, = {1,1,1,1, ..}, Which is convergent sequence.
Therefore, {A%x,}>_, Ec

Hence, {x,}o-, ={1,2,4,7,11,..} € c(A?)
3. MAIN RESULTS

Theorem 3.1. The spaces £, (A?), c(A?) and ¢, (A?) are linear spaces.

Proof. We shall prove that all three double difference sequence spaces are linear spaces as follows:

(1). For £, (A?) is a linear space.

Since, £, (A%) ={x = (x,) : A%x € £,,}. Let x,y € £,,(A%). Then A2x, A%y € £, or A’x,, A%y, € 4.

We know that, 4, = {x = (x,) € w : sup |x,| < oo}
neN

Therefore, sup |A%x,| < oo and sup |A%y,| < «
neN nenN

= (sup |A%x,| + sup [A%y,]) < oo
neN neN

= sup |A%x,, + A%y, | <
nenN

= (A%x, + A%y,) € 4o

> A(x, +y) € o

> A(x+7y) €L,

=> (x+y)€et,

Now, let « be a scalar and x € #,,(A?) be an arbitrary sequence.
Therefore, A%x,, € £,,. Then

sup |A%x,| < o
neN

= a(sup|A%x,|) <
neN
= al’x, € 4,
= ax, € £,(A%)
= ax € £,(4%)
Hence, £.,(A?) is a linear space.
(2) For the sequence space c(A?) to be linear space.

Since, c(A?) = {x = (x,,) : A%x € c}. Let x,y € £,,(A?).

= A?x,A% € c or A’x,, A%y, € c. Also, c = {x =(x,) Ew: Tlll—l;lt}o |x, — €| =0, for some £ € (C}
Since, 1111_{510 |A%x, —¢,| =0 and 1111&10 |A%x, —£,] =0

= 7111_{210|A2xn — 4] +rlll£§° |A%x, — €3] =0

= Tlli_{£10{|A2xn — 41| + 8%, — £,]} =0

= lim (A% ] + | = £3] + 8%, | + =2} < 0

or ii_{{}o{mzxﬂ + 81| + [A%x;] + [£2]3 < 0

or lim{|A%x,| + |A%y,| + |€1] + |£2]3 < 0
n—-oo
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or lim{|(A%x, + A%y,) — (&1 +£,)|} <0
n—oo

= (A%x, + A%y,) Ec

= (X, +y) € c(A%)

=> (x+y) € c(A?).

And let o be a scalar and x € c(A?).
> Ax€ec

= lim [A%x, — £ = 0

= lim |A>x—¢| =0

n—-oo

= lim a|A’x —£| =0
n—-oo

= lim |aA’x —af| =0

n—-oo

> alN’x€c
> ax € c(A?).
Hence, c(A?) is a linear space.
(3) For the sequence space c,(A?) is linear space. ¢, (A?) = {x = (x,)) : A? € ¢,}. Let x,y € cy(A2).
Therefore, A?x,A? € ¢,
Since, cg = {x = (x,) Ew: ,li_rf}ox" =0
Therefore, lim A?x, =0 and lim A%y, =0
= lim A%x, + lim A%y, =0

n-00 N0
= ,lli_r,?o(Azxn +A%y,)=0
= (A%x, + A%y,) € ¢,
= (n + ) € 6(4%)
= (x +y) € cp(A?)
Let a be a scalar and x € ¢, (A?).
=> A’x € ¢
= lim A’x, =0

n—c0
= 7lzl—r>1<;lo alN’x, =0
= al’x, € ¢,
or alh’x € c,
= ax € cy(A?).

Hence, ¢, (A?) is a linear space.

Theorem 3.2. £,,(A?, F) is a Banach space with norm

. |A%xy |
[1x|p2 = inf{p > 0 : sup( ) <1

nz0
Proof. Let (x) be a Cauchy sequence in €., (A%, F). Where, (x*) = (xi,x4,xi,...) € £,,(A% F) foreach i € N.

Let, r,x, > 0 be fixed. Since (x') is a Cauchy sequence. Therefore by the definition of Cauchy sequence, for each % > 0, there exists a
0

positive integer N such that
. . €
b—x] <— vV ,j=N 3.1
[l = x/llge < = ij 3.1

Now by the definition of norm
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2,0 _A2.0
= F(M)gl

[lxi=x] || 2

Hence, we can find r > 0 with F (rzﬁ) > 1 such that

F (7'A2"’i““"£> <1<F (ﬂ)

llxt=2T]| p2 2

2,0 _A2,)
= F 8% A 2, SF(@)
llxi—x | 52 2

Since F is non-decreasing function, therefore

(|A2x,i1—A2x¥l> < TXo

llxt-xillp2 ) = 2

e
> (0% — a22] < (52) (lIxt = ] 12)

a2, — 2] < (22) (=) Using (3.1)

2 rXxo
> |A2xh — A%x]| < G) <e

> |A2xl — A% <€

= (A%x}) isa Cauchy sequence in R.

Therefore, for all e(0 < € < 1) there exists a positive integer N such that

|A2xi — A%x)| < € foralli,j>N.

Since F is continuous. Therefore by the definition of continuity of a function F, we have

|A2xE - lim Azxj|
sup F (M <1
p

n=N
|AZxh—AZx
= sup(——) <1
nzlp\l) ( p )
Taking infimum of such p's we get
2.0 _ A2
inf{p>0:supF(w)S 1}<e foralli>Nandj— o
nzN p

Since (x;) € £, (A%, F) and F is an Orlicz function which is continuous as well.

Therefore, x € £, (A%, F). Hence, £, (A%, F) is a Banach space with the norm

iy _ | A%,
[1x]|p2 = inf{p > 0 : sup F P

nz0
Theorem 3.3. Let F be an Orlicz function which satisfies A, —condition, then
(1) ¢o(A%) € co(A% F)
(2) c(A?) c c(A%F)
(3) £,(A%) c £, (A% F).
Proof. (1) Letx € cq(A?).

= lim A’x, =0 or A’x, > 0, asn - »

n-oo

AZx
= ( p”)—»O, asn — o

AZx
= F(M)ﬁﬂ, asn — o
p

2
> limF('A’fx”')=0 = x € ¢o(A4F)

n—-oo
Hence, ¢y (A?) © ¢y (A%, F).
(2) Letx € c(A?).

> A%x,>f asn—o o
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> Ax,—-£->0 > (%)—»O
Therefore, F ('Az’;%_”) F(0) = F ('A ’;”_f) -0

2, _
Then, F(0) =0 = lim F (M) =0
n-oo P

= x € c(A% F). Hence, c(A?) c c(A%, F).
(3) Letx € £,(A2).

= |Ax,| <N = (M) < (ﬁ)

P P
Then by the A, —condition of Orlicz function F, We have

F (IAPxn|) < F( ) < k¢F(N). Where £ = %

<o = x€4£(A%F)

= supF (lAsz”l)

Hence, £, (A?) c £, (A?).

4. PARANORMED DOUBLE DIFFERENCE SEQUENCE SPACES

Now we define sequence space for an Orlicz function F in Paranormed sequence spaces as ¢, (p), c(p), £ (p)([7], [6]). Let x = (x,) be a

sequence of positive real numbers.
. |A2xk| o
co(A%,F,p) ={x = (x,): lim | F ; =0
n—oo

{ . ( |a2x, — 21\ \"
c(@? F,p) = {x = (x) ¢ lim F<T) =0
i ( 182, 1\ \ ™
YR S (T ))
nz0

It is to be noted that ¢, (A%, F,p) = co(A%,F),c(A?, F,p) = c(A?, F), if p, is constant.

The norm G of these paranormed sequence space is

b (5 =
G(x) =inf{pH : {sup| F <1
n=0 p

Theorem 4.1. £.,(A, F,p) is complete paranormed space with norm G

Where, H = max (1, sup pn).

nz0

1

P AN
G(x) =inf{pH : {sup F(T") <1, Where H = max {1, suppn}

n=0 n=0

Proof. Let (x;) be any Cauchy sequence in the space £, (A%, F,p) and r, x, > 0 be fixed. For each i > 0, there exists a positive integer N
0
such that

G(x' —x7) < —, foralli,j =N 4.1)

Now using definition of paranorm, we get

1

|A2xl—A2 J| H
sup| F i) <1, foralli,j=N
n=0

Jazxi-az [\ )" -
= sup| F i) <1 foralli,j=N

n=0
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|A2xn _A2y J|
= F G(xi-xJ)
For r > 0 with F (rxo) > 1, we have

|A2xn _A2y J| rx
> F( i) < F(T")

|Az l_AZ J| r
= ( H(xt-x]) (20)
= |62} — A%x)| < G(x' —x)) (Txo)
> |aZx) — A2x 1| (Txﬂ) (%) = (%) Using (4.1)
> |A%x] - Azx,” < % <€
|A2xi — A%x) < e

Hence, (A%x?) is a Cauchy sequence in R.

Now using the continuity of F, we have

|~

Pn

) . H
|AZxk - lim A2x))|
joo0 n
sup| F| —2=2— <1

n=N P
.
1a2xi—a2x\\ Y
= {sup|( F|———— <1
e (r(=22))

Taking infimum of p's, we get

1

n 2.0 a2 PnyH
inf p%:{sup<F(w)> } <1;<e€ foralli,j = N and j - oo.

nz=N p

Since, (x%) € £, (A% F,p) and F is continuous. Therefore, x € £, (A% F,p).

Hence, 4., (A%, F,p) is a complete paranormed space with norm

1

Pk 2 Pn\H
G(x)=inf{pH: {sup <F (W%"')) } <1

nz0

Theorem 4.2. Let 0 < p, < g, < o for each n, then ¢, (A%, F,p) € c,(A2%, F, q).
Proof. Let x € ¢,(A?, F, p).There exists p > 0 such that

lim (F ('Aﬂ))pn =0
n—-oo P

For sufficiently large k, F ('Ap"”') <1

Since F is non decreasing function, therefore
dn Pn

. [a%x5| . |a%xn | —

,Em(F(—p )) =lm(F(55)) =0

2 dn
= lim (F(@)) =0 = x €cy(A%F,q)

n—-oo
Hence, ¢ (A%, F,p) € ¢y (A%, F, q).
Theorem 4.3. For the sequence space c,(A?%, F) and ¢, (A%, F, q), we have

(1) Let 0 <infp, < 1.Then ¢y (A%, F,p) S ¢y (A% F)
(2) Let 1<p, <supp, <. Then cy(A% F) C ¢y(A%,F,p).

Proof. We prove the results as follows:

, Where H = max{

1,sup p,

nz0 }
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(1)

)

2 Pn
Let x € cy(A?, F,p), then lim (F (M)) =0
n—oo p
Since, 0 < infp, <p, < 1.

lim (F (%D < lim (F (MDW —0 > x€co(aF)

n—oo P n—-oo P
Therefore, co(A%, F,p) € co(A%, F).

Let p,, = 1 for each nand supp,, < . Let x € ¢,(A?, F), then for each €(0 < e < 1) there exists a positive integer N such that
neN

F(mi%ﬂ)ge’ vn=N.

Since, 1 < p,, < supp,, < o, we have

. |A%xy | Pn . |AZxy|
s (F (T)> = (F (T)) se<t

= x € ¢y(A% F,p). Hence, ¢y (A%, F) S ¢y (A%, F,p).
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